If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+85.2-579.36=0
We add all the numbers together, and all the variables
x^2-494.16=0
a = 1; b = 0; c = -494.16;
Δ = b2-4ac
Δ = 02-4·1·(-494.16)
Δ = 1976.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1976.64}}{2*1}=\frac{0-\sqrt{1976.64}}{2} =-\frac{\sqrt{}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1976.64}}{2*1}=\frac{0+\sqrt{1976.64}}{2} =\frac{\sqrt{}}{2} $
| -20-11s=-13s | | 2(4v-2)-3=28+v | | 0.32x^2+x-1.25=0 | | 12+3b=-b+7b | | -18.96+4.2w=15w-8.1w+19.11 | | -7(-3u+4)-u=2(u-5)-6 | | 13x+14(5-3x)=18 | | -7(3u+4)-u=2(u-5)-6 | | 8(y+3)=-4y-24 | | 4r-7=-3+4r | | 8(y+3)=4y-24 | | 5v+3=-9+v | | -4p+-8+8=2p-2-7p+15 | | 72=-t+9t | | 2y+10+8y=-10+8y | | 4+5v=4v+2 | | 19h+4+1=20h+20 | | 12z+8=-16 | | 2x^2+30x-6500=0 | | 2g-20=20-2g | | -6n+11=-19 | | -10w=-8w-18 | | 9k-36=6k-8 | | 0.16x^2+x-1.5=0 | | 7/x+1=2x−1/36 | | -9+4s=8s+9-10s | | 2x^2+3x-6500=0 | | 5/u=16-3u | | 9-p=12-3p | | -9+4s=+9-10s | | 2x^2-3x-6500=0 | | -8c-5=9-6c |